Staggered Finite Difference Schemes for Balance Laws
نویسندگان
چکیده
In this paper a new family of high-order finite-difference shock-capturing central schemes for hyperbolic systems with stiff source is presented. The schemes are based on recently developed finite difference discretization on staggered grids, coupled with implicit-explicit (IMEX) time discretization for an efficient treatment of the source term. Numerical tests show the robustness and accuracy of the method, for a wide range of the stiffness parameter.
منابع مشابه
Staggered Finite Difference Schemes for Conservation Laws
In this work, we introduce new finite-difference shock-capturing central schemes on staggered grids. Staggered schemes may have better resolution of the corresponding unstaggered schemes of the same order. They are based on high order non oscillatory reconstruction (ENO or WENO), and a suitable ODE solver for the computation of the integral of the flux. Although they suffer from a more severe s...
متن کاملWater hammer simulation by explicit central finite difference methods in staggered grids
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...
متن کاملCentral schemes for conservation laws with application to shallow water equations
An overview is given of finite volume central schemes for the numerical solution of systems of conservation and balance laws. Well balanced central schemes on staggered grid for the Saint-Venant model or river flow are considered. A scheme which is well balanced for channels with variable cross section is introduced. Finally, a scheme which preserves non static equilibria is introduced, and som...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملConservative properties of finite difference schemes for incompressible flow
1. Motivation and objectives The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). Experience has shown that kinetic energy conservation of the convective terms is required for stable incompressible unsteady flow simulations. Arakawa (1966) showed that...
متن کامل